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Generalizing results of L. Brutman and 1. Gopengauz (1999, Constr. Approx. 15,
611-617), we show that for any nonconstant entire function f'and any interpolation
scheme on [ —1,1], the associated Hermite-Fejér interpolating polynomials
diverge on any infinite subset of C\[ —1, 1]. Moreover, it turns out that even for
the locally uniform convergence on the open interval ]—1, 1[ it is necessary that
the interpolation scheme converges to the arcsine distribution.  © 2000 Academic Press

1. INTRODUCTION

The classical field of Hermite—Fejér interpolation, which is devoted to
polynomials H,, , € %, _, satisfying for a given function fon [ —1, 1] in
n interpolation nodes —1 <x; < --- <x,<1 the Hermite-type conditions

H2n—l(x):f(xi)s izl,..., n,

,2n71(xi):09 izls"'a n,

(1)

and its generalizations have attracted the attention of many mathe-
maticians (see [ 5] for an extensive bibliography). Here, the oldest and by
far most celebrated result is due to Fejér [3], who proved that for each
continuous function f, the Hermite—Fejér interpolants in the zeros of the
nth Chebyshev polynomials converge to f uniformly on [ —1, 1], which is
in striking contrast to the negative result in Faber’s theorem concerning
Lagrange interpolation.

A large number of papers is mainly devoted to finding conditions for the
convergence in the case of special interpolation schemes as, for instance,
the zeros of Jacobi polynomials.

Recently, in an interesting article, Brutman and Gopengauz [2] dis-
cussed for arbitrary interpolation nodes the divergence of Hermite—Fejér
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interpolants to the special function f,(z) =z in the complex plan, thus
pointing out the difference to the Lagrange interpolation process, which is
well known to converge locally uniformly in C.

Their paper is apparently also inspired by the surprising result of
Berman [1] in which pointwise divergence for fy(z)=z holds in
[—1,171\{ —1,0, 1}, if the underlying interpolation scheme is given by
equidistant points.

Though the proofs in [2] are relatively elementary, at some point com-
plex potential theory, which already plays a significant role in other fields
of polynomial and rational approximation, is needed.

One purpose of this paper is to show how potential theory can be used
to formulate and prove results in the theory of Hermite—Fejér interpola-
tion. Extending the result of Brutman and Gopengauz it will be shown that
for any nonconstant entire function and each interpolation scheme, the
Hermite—Fejér interpolation process diverges outside the interval [ —1, 1]
except for, roughly speaking (see Theorem 3), at most a finite number of
points.

In addition, it will be shown that in the case of nonconstant entire func-
tions even locally uniform convergence in ] — 1, 1[ is impossible, unless the
interpolation scheme converges to the equilibrium measure (i.e., the arcsine
distribution) on [ —1, 1] in the weak-star sense.

The corresponding precise statement in Theorem 4 gives an appropriate
interpretation of the aforementioned divergence result of Berman, which
then no longer appears that surprising.

2. NOTATION FROM POTENTIAL THEORY

We need to introduce some notation from potential theory (for more
details, the reader is referred to the recent monograph of Saff and Totik
[8]).

For a unit (Borel-) measure 4 on [ —1,1] we define its logarithmic
potential via

U*(x) = [ log du(y)  (xeC),

[x— yl

which is a function superharmonic in C and harmonic outside its support
supp(u). In addition, set

E(Z,pu):={zeC:U*(z)> 1} (LeR) and
Mu):= inf  U*(x).

xe[—1,1]

(2)
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By the lower semicontinuity of U*, for each —oo <A< A(u), E(4, 1) is an
open neighbourhood of [ —1, 1].

It is well known that U* is constant on [ —1, 1] if and only if y is the
so-called Robin equilibrium measure (or arcsine distribution) on [ —1, 17];
ie.,

1 dx

du(x)=— (xe]—=L1[).

By an interpolation scheme X = (x{™) in [ —1, 1] we understand a tri-
angular matrix of interpolation nodes —1<x{" < .. <x"<1,n>1.

We say that along some subsequence 4 <N the interpolation scheme
(x{™) has weak-star limit x*, if along A the unit measures v, associating
with each point x{" the equal mass 1/n converge to (the unit measure on
[—1,1]) u* in the weak-star sense. Then, as is well known,

n

[T (x—x)

i=1

1/n

log = U"(x) 254 U*(x)

locally uniformly for xe C\[ —1, 1].
Finally, for a set A = C denote by | .| 4, the Chebyshev norm on A.

3. AN AUXILIARY INTERPOLATION PROBLEM

Suppose /1 is a function continuous on [ —1, 1]. For an interpolation
scheme X' = (x) in [ —1, 1], denote by r,,_,=ry,_;(h; X; - )€, _, the
polynomial satisfying the Hermite-type interpolation conditions

Fan_1(x7)=0, i=1,..,n,
(3)
P 1 (X)) = h(x{"), i=1,..,n
By the Hermite interpolation formula,
¢ (w,(x))? 1
ra—1(¥)= 3 ) = i (4)
i=1 (wn(xg ))? (x—xﬁ ))

where @, (x) :=TT¢_; (x —x).
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THEOREM 1. Suppose h has exactly 0 <s< oo zerosin [ —1,1]. Le A be
a subsequence of N. Then either

(i) for every set A<= C\[ —1, 1] consisting of at least s+ 1 points,
there holds

A
”r2n—l”A i o0,

or

(1) there exists a subsequence A, < A, a weak-star limit u* along A,
of the interpolation scheme, and a point t, in the support of u* such that for
some disk D(t,) centered at t,,

ned
Hr2n—lHD(t0) -

In addition, if (ii) holds, one may choose any point t, for which U**(t,) = o0
(if such a point exists), e.g., if u*({to})>0.

Remark. 1t can be shown that in the most interesting cases (ii) is
impossible, for instance

(a) if each weak-star limit of the interpolation scheme is a measure,
the possible point masses of which are not zeros of /4 (in particular, if any
weak-star limit is a continuous measure on [ —1, 1]);

(b) if & is entire or only analytic in a sufficiently large neighbourhood
of [—1,1], eg., if & is analytic in a neighbourhood of the set {zeC:
dist(z, [ —1,1]) <2} (see the reasoning in the proof of Theorem 3 and
[4, p. 64-65]).

That (ii) in Theorem 1 is possible can be seen from the following

ExamMpPLE. Look at the #*-function A(x)=exp(—1/x?) and consider
the interpolation scheme x!” = y™ /n, where y{”, .., y are the zeros of
the nth Chebyshev polynomial 7, on [ —1, 1], normalized by || T, [ _1, ;=1
Performing a linear transformation, it is easy to see that

© L (TR 1
et (0= L M) 3 (s oy

i=1

Since the Green function g(-, o) of the complement of [ —1,1] has a
logarithmic pole at oo, there exists ny>2 such that for |x|=n=>n,,
g(nx, 00) < 3 log n. Taking into account that |7, (y\)| >n (see [7, p. 7]),



280 BLATT AND GOTZ

the Bernstein—Walsh lemma (see [ 8, p. 153]) thus implies that if |x| =n > n,,
then

1 /1 | T, (nx)|?
|r2n71('x)| <;h <I’l> dist(nX, [_13 1])

1 1
<h <> exp(2ng(nx, o0))<h <> exp(6n log n).
n n
By the maximum principle, this estimate also holds for |x| <n. Inserting

h(1/n) =exp( — n?) yields that r,,_, — 0 locally uniformly in C.

Proof of Theorem 1. Assume contrary to (i) that there exists a set
A<=C\[ —1, 1] consisting of s+ 1 points such that for some subsequence
Ag = A, ||y, 1]l 4 remains bounded along 4.

Now, r,,_(x)=w2(x) ¢,(x), where
u h(x(”)) 1
g n(XE))? (x —xi)

is a rational function of degree <n. If for some index k we have sign
h(x{M) =sign h(x{) ) #0, then ¢, has at least one zero in Jx{”, x¢) [.
Therefore, ¢, has at least max(n —s—s),— 1, 0) zeros of this kind, interlac-
ing with the points x{", where 0 <s/, <s denotes the number of points x{"
for which A(x{™)=0. But if 4(x{™) =0, then r,,_, has a double zero at x{".
Thus, r,,_; has at most s zeros outside the interval [ —1,1], and we
denote them by ({7, .. C(") 0<s,<5s.

Set @, (x):=11(x— 17) where the product is taken over the zeros 7 of
Fon—1in [ —1, 1], counted with multiplicities. Then for some real coefficient

Hop—15

Sy

Fop—1(X) =gy 1 O ( n C(n)

By Helly’s selection theorem (see [ 8, p.3]), there exists a subsequence
A, =4, and a unit measure u* on [ —1,1] such that along A,, the
normalized zero counting measures associated with the polynomial @,
converge to u* in the weak-star sense. Consequently,

ilo 1 neAl
8 16,(x)]

U (x) (3)

locally uniformly for xe C\[ —1, 1].
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Since s,<s< #A, we may (after possibly passing to another sub-
sequence) w.l.o.g. assume that there exists a point x, € 4 such that for some
constant ¢,

|C§")fx0|>co>0 (nedy,i=1,..s,). (6)

Next, by the maximum principle (see [8, Remark 1.1.6]), there exist ¢, €
supp(u*) and &> 0 such that U**(t,) > U**(x,) +4e. Since U*" is lower
semicontinuous,

U“*(x)> U (xo) +4e  (xeDy), (7)
where D, is some open disk centered at ¢,.

Now, let Ic[ —1,1]n D, be a closed, nondegenerate interval contain-
ing #,. Consider the segments I;:={x+id:xel}, 0<J<J,, where 4> 0
is such that /5 = D,. In addition, denote by g;s(-, ©0)=gc\;(-, ) the
Green function of the complement of 75 with pole at infinity.

Since the Green function is continuous in C and vanishes on /5, we may

choose the parameter 0<d,=0,(¢)<J, so small that for x in a
neighbourhood of 1,

g51 (X, OO) < &
Thus, by the Bernstein—Walsh lemma,
|0, (xX)| < || @, |17, exp(2ne) (8)

for x in a neighborhood of I.
But by (5) and (7) for ne A, sufficiently large,

|,()[V <exp(— U(y) +¢)
<@, (x0) |V exp(U*(x) — U () + 2¢)

<|@,(x0)| " exp(—2¢)  (yels),
so that by virtue of (8) for such n and for x in a neighbourhood of ¢, € I,
|,,(x)] <@, (x0)] exp( — 2ne).

This implies that for n e A, sufficiently large and x in this neighbourhood
of t,,
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72— 1 (X)] < [0t 41| [@D,,(x0) | €Xp( — 2n¢)

f—[ x C(n)

-
= [ran—1(Xo)| exp( —2n¢) [] T )
k=1 |X0—Z:k |

<|ran—1(xo)| exp( —2ne) ¢, 9)

with a constant ¢, not depending on n (but on s and the constant ¢, in (6)).
In particular, since |r,,_;(x,)| is bounded, r,,_; has to converge to 0
along A4, uniformly in a neighbourhood of ¢#,. Thus, (ii) holds, and the
proof of Theorem 1 is complete. ||

THEOREM 2. Let h be as in Theorem 1. Suppose that along some sub-
sequence A <N the interpolation scheme has weak-star limit u*. Then at
least one of the following assertions holds:

(1) For each (nondegenerate) closed subinterval Ic[ —1, 1] on which
the logarilhmic potential U*" is not identically equal to the constant

sup { U*"((): (e C},

neAd
72— 1l — o0.
1) There exists a subsequence A, = A and a point t, € su *) such
q 1 p 0 pplu
that for some disk D(t,) centered at t,,

neAd
Hr2n71HD(t0) —

In addition, we may choose in (ii) any point t, satisfying U*"(to) = o0 (if
such a point exists).

Proof. Suppose (i) does not hold. Then there exists a nondegenerate
closed subinterval 7 of [ —1, 1] on which U*" is not identically equal to its
global supremum and, moreover, for some subsequence A4, < 4,

sup |11y, —1lly< oo.
ned;

By the lower semicontinuity of the potential U*", there exists x, € I with
the property that U**(x,) =inf, U*". Choose t, €[ —1,1] and &> 0 such
that U“"(ty) > U""(x,) + Se. Of course we may select any point satisfying
U**(t,) = oo (if such a point exists).

Again, since U*" is lower semicontinuous, we can choose an open disk
D, centered at ¢, such that

UP (1) > U (xo) + 56 (t€Dy). (10)
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As in the proof of Theorem 1 we write

Sn

Fon—1(X) =0, _1@,(X) H (X—an)),
i=1

where the CJ(.") are the finitely many zeros of r,,_; outside the interval
[ —1, 1]. As before, denote by g, (-, c0) the Green function of the comple-
ment of 7 with pole at oo.

From the mean-value inequality property

1

U(x) >3] UTQdm(Q) (r>0)
[—xpl <7

with respect to the two-dimensional Lebesgue volume m, we deduce that
for every neighbourhood U of x, the planar Lebesgue measure of the set
{xeU: U*(x) < U"(x,)} is positive. Therefore, we may find a positive

constant ¢, and a sequence of points z,, ne A, with the following proper-

ties:
(a) go(z,, 0)<e (ie., the z, are sufficiently close to 1),
(b)  U"(z,) S U(xo),
(c)
(d)

diSt(Zn’ [ - 15 1 ]) = Co>,
|Zn - an) | 2 Co-

Since |@,|"*" — exp( — U*") locally uniformly in C\[ —1,1] along A
and taking into account property (c) as well as (b) and (10), we obtain
that for e D, and n € 4 sufficiently large,

exp( — U*"(1)) <exp( — U*'(z,) — 5¢) < |@,(z,)| V" exp( —4e).

As in the proof of Theorem 1 it follows that for ¢ in a neighbourhood of
t, and n e A sufficiently large,

|, ()] < |@,(2,)| V" exp( —2e).
Thus, for such ¢ and n,
[F2n—1 (D < |r2n—1(2,) exp( —2n2e) ¢y < [|ry, 1l exp( —2ne) ¢4,

where ¢, is independent of n (see (d) and the reasoning in (9) in the proof
of Theorem 1) and where the last inequality follows from (a) and the
Bernstein—Walsh lemma. P

But ||r,,_ ;|7 is assumed to be bounded along A, so that |r,,_,| 2200
uniformly in a neighbourhood of ¢,; i.e., (ii) holds. ||
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4. DIVERGENCE OF HERMITE-FEJER INTERPOLANTS

Let f be continuous on [ —1, 1] and denote by H,,_;=H,,_,(f; X; -)
€ %,,_, the Hermite—Fejér interpolants (see (1)) associated with an inter-
polation scheme X = (x!"). It is easy to see that by the Montel theorem the
Hermite-Fejér interpolants to a nonconstant entire (or only analytic on
[—1,1]) function have to be unbounded in each neighbourhood of
[ —1, 1]. But one can say more:

THEOREM 3. Let f be a nonconstant entire function and, say, f' has
exactly s zeros in [ —1, 1]. Then for any set A= C\[ —1, 1] consisting of at
least s+ 1 points there holds

lim || f—H,, 4| 4= 0.

n— oo

Proof. Tt is well known [4, p.64] that the Hermite interpolants
H,,_, € ?,_, interpolating f and the derivative of fin the points x{™ con-
verge locally uniformly in C to the function f (in particular, they are locally
uniformly bounded). The assertion now follows from Theorem 1 and the
observation that

FIZn—IZHZn—1+r2n—l(f’;X; -). (11)
In fact, (ii) in Theorem 1 is not possible, since otherwise H;n_lﬁ f
uniformly in a neighbourhood of some point ¢, € supp(x«*). By Rouché’s
theorem, for ne A, sufficiently large, H%,_; could not have more zeros
(counted with multiplicities) than /" in some neighbourhood of ¢,, which
contradicts the definition of H,,_ ; together with the fact that

1o € supp(u™®).

Remarks. (1) As the proof shows, the assertion of Theorem 3 can be
formulated in a more general setting, e.g., for functions analytic in a
neighbourhood of [ —1,1]. In fact, it is only needed that the classical
Hermite interpolants remain bounded on A and that the case (ii) of
Theorem 1 with 4= f" is impossible. We will not dwell on the precise state-
ment of such a generalization, but the formulation of the subsequent
Theorem 4 will give a hint of what has to be done.

(i1)) There are (nonconstant) % *-functions and interpolation schemes
such that the corresponding Hermite—Fejér interpolants converge locally
uniformly in C (but not necessarily on [ —1, 1] to the given function).
For instance, one may look at f(x)=-exp( — 1/x?), which has a zero of
infinite multiplicity at 0, and choose an interpolation scheme that con-
verges sufficiently fast to the Dirac measure at 0.
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That there can be points outside [ —1, 1] in which the error function
f— H,,_, vanishes is shown in the following simple.

ExampLE. Fix aeR\[ —1,1] and consider the polynomial f(z):=
—23/34+az%/2. Then, by (4) and (11) for n>2 and any interpolation
scheme X = (x™) which is symmetric with respect to the origin,

" Lo (@4(0)
S(0) = Hpy 1 (20) =11 (f5 (x{7), Ot)=i§1xf- : WZO'

While the divergence of Hermite—Fejér interpolants outside the unit
interval is studied in Theorem 3, a result on possible divergence on subin-
tervals of [ —1, 1] is given in

THEOREM 4. Suppose that along some subsequence A, the interpolation
scheme converges to some measure u*. Assume that for some A < A(u*)
(see (2)), fis analytic and nonconstant in E(A, #*). Then for each subinter-
val Ic[—1,1] on which U*" is not constantly equal to its global
supremum, there holds

limoo [ f—=Hy_1l ;= 0.

A>n—

Proof of Theorem 4. Follows from Theorem 2 by applying the reason-
ing in the proof of Theorem 3. In fact, it is well known [ 6, p. 106] that the
assumption on the analyticity of f implies that the Hermite interpolants
H,, , converge to flocally uniformly in E(A, #*), which contains the inter-
val [-1,1]. 1

COROLLARY. Even for the locally uniform convergence on |1 — 1, 1[ of the
Hermite—Fejér interpolants to a nonconstant entire function, it is necessary
that the interpolation scheme converges to the arcsine distribution.

Remark. 1In the formulation of the Corollary we may replace a non-
constant entire function by a nonconstant function analytic in a
neighbourhood of the set G :={zeC:dist(z, [ —1, 1]) <2}. In fact, it can
be shown that for each unit measure u* on [ —1, 1], every neighbourhood
of G contains some region E(A*, u*) with A* < A(u*).

Since the weak-star limit of the interpolation scheme consisting of equi-
distant points is the uniform distribution on [ —1, 1], which can be shown
to have a logarithmic potential not constant on any subinterval, Theorem 4
sets the aforementioned result of Berman for f,(z) =z [ 1] into a new light.

We further illustrate the condition on the subintervals 7 by the following
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ExaMpPLE. Consider a nondegenerate closed proper subinterval I of
[—1,1]. From the general theory on Hermite—Fejér interpolation it
follows that fr the interpolation process in the zeros of the nth Chebyshev
polynomial of 1,

| f=Hy 1l =0

for every function f continuous on /. This does not contradict the statement
of Theorem 4, since the weak-star limit of the interpolation scheme is the
equilibrium distribution of I, which has constant logarithmic potential on 1.
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